Sampling Theorems and Bases in a Hilbert Space

نویسنده

  • Frederick J. Beutler
چکیده

A unified approach to sampling theorems for (wide sense) stat ionary random processes rests upon Hilbert space concepts. New results in sampling theory are obtained along the following lines: recovery of the process x(t) from nonperiodic samples, or when any finite number of samples are deleted; conditions for obtaining x (t) when only the past is sampled; a criterion for restoring x(t) from a finite number of consecutive samples; and a minimum mean square error est imate of x(t) based on any (possibly nonperiodie) set of samples. In each case, the proofs apply not only to the recovery of x(t), but are extended to show that (almost) arbitrary linear operations on x (t) can be reproduced by linear combinations of the samples. Further generality is at tained by use of the spectral distr ibution function F(. ) of x(t), without assuming F( . ) absolutely continuous.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A characterization of L-dual frames and L-dual Riesz bases

This paper is an investigation of $L$-dual frames with respect to a function-valued inner product, the so called $L$-bracket product on $L^{2}(G)$, where G is a locally compact abelian group with a uniform lattice $L$. We show that several well known theorems for dual frames and dual Riesz bases in a Hilbert space remain valid for $L$-dual frames and $L$-dual Riesz bases in $L^{2}(G)$.

متن کامل

Best proximity pair and coincidence point theorems for nonexpansive set-valued maps in Hilbert spaces

This paper is concerned with the best proximity pair problem in Hilbert spaces. Given two subsets $A$ and $B$ of a Hilbert space $H$ and the set-valued maps $F:A o 2^ B$ and $G:A_0 o 2^{A_0}$, where $A_0={xin A: |x-y|=d(A,B)~~~mbox{for some}~~~ yin B}$, best proximity pair theorems provide sufficient conditions that ensure the existence of an $x_0in A$ such that $$d(G(x_0),F(x_0))=d(A,B).$$

متن کامل

Sampling Expansions and Interpolation in Unitarily Translation Invariant Reproducing Kernel Hilbert Spaces

Sufficient conditions are established in order that, for a fixed infinite set of sampling points on the full line, a function satisfies a sampling theorem on a suitable closed subspace of a unitarily translation invariant reproducing kernel Hilbert space. A number of examples of such reproducing kernel Hilbert spaces and the corresponding sampling expansions are given. Sampling theorems for fun...

متن کامل

Some Fixed Point Theorems in Generalized Metric Spaces Endowed with Vector-valued Metrics and Application in Linear and Nonlinear Matrix Equations

Let $mathcal{X}$ be a partially ordered set and $d$ be a generalized metric on $mathcal{X}$. We obtain some results in coupled and coupled coincidence of $g$-monotone functions on $mathcal{X}$, where $g$ is a function from $mathcal{X}$ into itself. Moreover, we show that a nonexpansive mapping on a partially ordered Hilbert space has a fixed point lying in  the unit ball of  the Hilbert space. ...

متن کامل

G-Frames, g-orthonormal bases and g-Riesz bases

G-Frames in Hilbert spaces are a redundant set of operators which yield a representation for each vector in the space. In this paper we investigate the connection between g-frames, g-orthonormal bases and g-Riesz bases. We show that a family of bounded operators is a g-Bessel sequences if and only if the Gram matrix associated to its denes a bounded operator.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Information and Control

دوره 4  شماره 

صفحات  -

تاریخ انتشار 1961